Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

4-Benzoyloxy-2-methyl-N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide

Tatiana N. Drebushchak, ${ }^{\text {a* }}$ Natalia N. Pankrushina, ${ }^{\text {b }}$ Tatiana P. Shakhtshneider ${ }^{\text {a }}$ and Svetlana A. Apenina ${ }^{\text {a }}$

${ }^{\text {a }}$ Institute of Solid State Chemistry and Mechanochemistry, SD Russian Academy of Sciences, Kutateladze 18, Novosibirsk 128, 630128, Russian Federation, and
${ }^{\mathbf{b}}$ Novosibirsk Institute of Organic Chemistry, SB Russian Academy of Sciences, Lavrent'ev Ave. 9, Novosibirsk 90, 630090, Russian Federation
Correspondence e-mail: tanya@xray.nsu.ru

Received 3 April 2006
Accepted 31 May 2006
Online 23 June 2006
The crystal structure of the title compound, $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$, contains dimers linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds about inversion centers. The dimers are packed in a herring-bone framework without classical hydrogen bonds between the structure-forming units.

Comment

Piroxicam, 4-hydroxy-2-methyl- N -(2-pyridyl)-2H-1,2-benzo-thiazine-3-carboxamide 1,1-dioxide, is a non-steroidal antiinflammatory and analgesic drug belonging to a new class of compounds called oxicams (Hirai et al., 1997, Khalil et al., 2000). Besides great therapeutic potential, oxicams are very interesting polyfunctional chemical compounds by virtue of their dynamic structural features, which include tautomeric switches and their possible polymorphism (Banerjee \& Sarkar, 2002). Piroxicam benzoate, (I), was synthesized by an acylation reaction from piroxicam and benzoyl chloride (Boneschans et al., 2003). This acyl piroxicam derivative proved to be useful in therapy as a non-steroidal anti-inflammatory agent (Lombardino, 1982). Compound (I) has been characterized by elemental analysis, IR spectroscopy, high-performance liquid chromatography (HPLC) and thermal analysis (melting point) (Boneschans et al., 2003; Lombardino, 1982), but its crystal structure has not been solved until now. The structure of a compound of similar composition, namely 4-ethoxy-2-methylN -(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide, (II), which contains an ethoxy group instead of the benzoyloxy group, was solved by Hammen et al. (1989).

We have synthesized piroxicam benzoate according to a modified procedure and have studied the crystalline structure. Single crystals of (I), grown from ethyl acetate, are monoclinic (space group $P 2_{1} / n, Z=4$), with one molecule in the asymmetric unit (Fig. 1). Selected geometric parameters of the molecule are listed in Table 1. The geometric parameters of
the piroxicam group in (I) are similar to those in β-piroxicam. The $\mathrm{C} 2-\mathrm{O} 4$ bond length in (I) is the longest among those of

(I)
polymorphs of piroxicam [1.339 (15)-1.350 (9) Å; KojićProdić \& Ruzic-Toros, 1982; Reck et al., 1988] or the monohydrate of piroxicam [1.268 (5)-1.279 (5) Å; Bordner et al., 1984; Reck et al., 1988], but is close to that in (II) [1.377 (7) A.; Hammen et al., 1989]. Conversely, the C10-O3 bond length is somewhat shorter than those in other piroxicam-based structures $[1.223(7)-1.262(10) \AA$ Å]. Despite the fact that only one O atom of the SO_{2} group is involved in hydrogen bonding, the $\mathrm{S} 1-\mathrm{O} 1$ and $\mathrm{S} 1-\mathrm{O} 2$ bond lengths are identical within the limits of experimental error, as is the case for β-piroxicam (Kojić-Prodić \& Ruzic-Toros, 1982). In piroxicam monohydrate and (II), these lengths differ from one another, and the greatest difference is found in α-piroxicam [1.465 (14) and 1.406 (10) Å; Reck et al., 1988]. There are remarkable differences in the $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10-\mathrm{O} 3$ torsion angle (Table 1). This angle is about -177° in piroxicam monohydrate and (II), but 6.0 (5) and $1(2)^{\circ}$ in β - and α-piroxicam, respectively. In piroxicam benzoate, atom O 3 is on the same side of the molecule as atom O 4 , but the $\mathrm{N} 2-\mathrm{H} 2$ group is on the opposite side. This fact is very important, because atom N2 is involved in hydrogen bonding. The angle between the planes of the C3C 8 and C17-C22 rings in (I) is $53.3(1)^{\circ}$.

Figure 1
A view of piroxicam benzoate, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

organic compounds

The molecules of (I) are linked together by paired N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), forming a centrosymmetric $R_{2}^{2}(14)$ dimer (Fig. 2). Similar dimers are observed in β-piroxicam. The structure of α-piroxicam is formed by uncoupled molecules. There is an infinite three-dimensional framework of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in piroxicam monohydrate, with water molecules playing an important role in bonding. In turn, in (II), there are no conventional hydrogen bonds, only intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ ones.

The molecules in (I) are linked into a three-dimensional framework by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds, in which atom O 5 accepts bonds from the $\mathrm{C} 5-\mathrm{H} 5$ group of the benzyl ring and the $\mathrm{C} 13-\mathrm{H} 13$ group of the pyridine ring in two neighboring molecules (Fig. 3 and Table 2). The molecules are packed in a herring-bone structure, with O 5 as the site of junction.

Figure 2
The dimer of piroxicam benzoate, with dashed lines indicating hydrogen bonds. [Symmetry code: (i) $-x+1,-y+1,-z$.]

Figure 3
Part of the crystal structure of piroxicam benzoate. The molecules are packed in a herring-bone structure, with atom O5 as the site of junction. [Symmetry codes: (ii) $-x+1,-y+1,-z+1$; (iii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.]

Among the remaining short distances between atoms belonging to different molecules, the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ contacts involving atom N 3 of the pyridine ring are very interesting. This atom appears to be the site of a junction between three molecules. The $\mathrm{C} 21-\mathrm{H} 21$ group in the molecule at $\left(\frac{1}{2}+x, \frac{1}{2}-y\right.$, $-\frac{1}{2}+z$) [symmetry code (iv)] is at a $\mathrm{C} 21^{\mathrm{iv}} \ldots \mathrm{N} 3$ distance of $3.439(5) \AA\left(\mathrm{H} 21^{\mathrm{iv}} \cdots \mathrm{N} 3=2.68 \AA\right.$ and $\mathrm{C} 21^{\mathrm{iv}}-\mathrm{H} 21^{\mathrm{iv}} \cdots \mathrm{N} 3=$ 139°), and the $\mathrm{C} 18-\mathrm{H} 18$ group in the molecule at $(-x, 1-y$, $-z$) [symmetry code (v)] is at a $\mathrm{C} 18^{\mathrm{v}} \ldots \mathrm{N} 3$ distance of $3.434(4) \AA\left(\mathrm{H} 18^{\mathrm{v}} \cdots \mathrm{N} 3=2.69 \AA\right.$ and $\mathrm{C} 18^{\mathrm{v}}-\mathrm{H} 18^{\mathrm{v}} \cdots \mathrm{N} 3=$ 138°). The parameters of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ contacts are identical within the limits of experimental errors, but they are not related to one another via symmetry. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ contacts form an infinite two-dimensional-framework.

Experimental

A solution of benzoyl chloride $(0.4 \mathrm{ml}, 3.0 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(5.0 \mathrm{ml})$ and a solution of triethylamine $(0.6 \mathrm{ml}, 4.5 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(5.0 \mathrm{ml})$ were simultaneously added dropwise to a suspension of piroxicam $(0.99 \mathrm{~g}$, $3.0 \mathrm{mmol})$ in dry $\mathrm{CCl}_{4}(9.0 \mathrm{ml})$ under a nitrogen atmosphere while cooling in an ice bath. The mixture was then stirred at room temperature under a nitrogen atmosphere for 5 h . The solvent was evaporated in vacuo and the residue was treated according to a standard procedure to obtain the crude product $(1.27 \mathrm{~g}, 86 \%$ purity, HPLC). The product was recrystallized from ethyl acetate to give pure (I) [m.p. 421-423 K; literature 418-421 K (Boneschans et al., 2003)].

Crystal data
$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$
$M_{r}=435.46$
Monoclinic, $P 2_{1} / n$
$a=11.106$ (3) \AA
$b=16.5606$ (16) \AA
$c=12.0351$ (18) \AA
$\beta=111.463$ (12) ${ }^{\circ}$
$V=2060.0(7) \AA^{3}$

Data collection

Stoe Stadi-4 four-circle diffractometer
ω scans
Absorption correction: ψ scan
(X-RED; Stoe \& Cie, 1997)
$T_{\text {min }}=0.900, T_{\text {max }}=0.956$
9810 measured reflections
4717 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0353 P)^{2} \\
&+0.7359 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.135$
$S=1.09$
4717 reflections
331 parameters

2544 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\text {max }}=27.5^{\circ}$
3 standard reflections
frequency: 180 min
intensity decay: 3.8%

$Z=4$

$D_{x}=1.404 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation $\mu=0.20 \mathrm{~mm}^{-1}$
$T=295$ (3) K
Block, colorless
$0.42 \times 0.34 \times 0.23 \mathrm{~mm}$

H -atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

C2-O4	$1.388(3)$	$\mathrm{N} 1-\mathrm{S} 1$	$1.639(2)$
$\mathrm{C} 10-\mathrm{O} 3$	$1.216(3)$	$\mathrm{O} 1-\mathrm{S} 1$	$1.425(2)$
$\mathrm{C} 16-\mathrm{O} 5$	$1.196(3)$	$\mathrm{O} 2-\mathrm{S} 1$	$1.424(2)$
$\mathrm{C} 16-\mathrm{O} 4$	$1.366(3)$		
$\mathrm{C} 16-\mathrm{O} 4-\mathrm{C} 2$	$118.9(2)$	$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 7$	$101.29(13)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	$120.03(14)$		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10-\mathrm{O} 3$	$12.9(5)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 4-\mathrm{C} 16$	$71.3(4)$
$\mathrm{C} 1-\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 11$	$177.9(3)$		

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.47	$3.275(3)$	157
C5-H5 O^{ii}	0.93	2.54	$3.244(5)$	132
C13-H13 \cdots O $^{\mathrm{iii}}$	0.93	2.34	$3.240(4)$	163
Symmetry codes: (i) $-x+1,-y+1,-z ;$ (ii) $-x+1,-y+1,-z+1$; (iii) $x-\frac{1}{2},-y+\frac{1}{2}$,				
$z-\frac{1}{2}$.				

Data collection: STADI4 (Stoe \& Cie, 1997); cell refinement: STADI4; data reduction: X-RED (Stoe \& Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), PowderCell (Kraus \& Nolze, 1999) and MERCURY (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), SHELXL97 and X-RED.

This study was supported by two grants from BRHE (Nos. NO-008-X1 and Y3-C-08-01) and grant No. 2.2.2.3.2007 from the Russian Ministry of Education and Science.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV3014). Services for accessing these data are described at the back of the journal.

References

Banerjee, R. \& Sarkar, M. (2002). J. Lumin. 99, 255-263.
Boneschans, B., Wessels, A., van Staden, J., Zovko, M., Zorc, B. \& Bergh, J. (2003). Drug. Dev. Indust. Pharm. 29, 155-160.

Bordner, J., Richards, J. A., Weeks, P. \& Whipple, E. B. (1984). Acta Cryst. C40, 989-990.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hammen, P. D., Berke, H., Bordner, J., Braisted, A. C., Lombardino, J. G. \& Whipple, E. B. (1989). J. Heterocycl. Chem. 26, 11-16.
Hirai, T., Matsumoto, S. \& Kishi, I. (1997). J. Chromatogr. B, 692, 375-388.
Khalil, S., Borham, N. \& El-Ries, M. A. (2000). Anal. Chim. Acta, 441, 215-219.
Kojić-Prodić, B. \& Ruzic-Toros, Z. (1982). Acta Cryst. B38, 2948-2951.
Kraus, W. \& Nolze, G. (1999). PowderCell. Version 2.4. Federal Institute for Material Research and Testing, Berlin, Germany.
Lombardino, J. G. (1982). US Patent No. 4309 427; Chem. Abstr. 96, 122810s.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Reck, G., Dietz, G., Laban, G., Gunter, W., Bannier, G. \& Hohne, E. (1988). Pharmazie, 43, 477-481.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1997). STADI4 and X-RED. Stoe \& Cie GmbH, Darmstadt, Germany.

